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We have performed depolarized dynamic light scattering measurements on suspensions of colloidal
spherical particles made of a fluorinated polymer. Electrostatic interactions are screened by adding
salt, so that the particles behave as hard spheres. By suspending the particles in an index-matching
solvent (18% urea in water) we have been able to investigate a wide range of particle volume
fractions ® from the dilute suspension up to 55%. The partially crystalline internal structure
of fluorinated polymer colloids gives rise to a significant depolarized component in the scattered
light field. By studying the temporal fluctuations of the depolarized component we can evaluate
the short-time self-translational and rotational diffusion coefficients of the particles over the whole
colloidal fluid phase and within the hard-sphere colloidal crystal. We also analyze the full shape
of the rotational correlation function, which deviates from an exponential behavior in concentrated
suspensions. Starting from the generalized Smoluchowski equation, we calculate the ® dependence of
the rotational diffusion coefficient up to the ®2 term and we discuss the validity of the approximation
that decouples translational from rotational motion. We find good agreement between theoretical
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and experimental results.

PACS number(s): 82.70.Dd, 05.40.+j

I. INTRODUCTION

In recent years dynamic light scattering has been
widely used for the investigation of the Brownian mo-
tion of interacting colloidal particles [1,2]. Both the
collective and single-particle translational diffusion co-
efficients of hard spherical colloids have been measured
as functions of the particle volume fraction ®. The re-
sults have been compared with calculations based on the
generalized Smoluchowski equation including hydrody-
namic interactions. Some years ago, the theory was ex-
tended to include rotational diffusion [3]. It is well known
that rotational diffusion can be investigated by dynamic
depolarized light scattering (DDLS) from dispersions of
anisotropic particles. However, if one has to rely on form
anisotropy, the experiment becomes feasible only with
large particles possessing a strongly nonspherical shape,
whereas theoretical studies to date have dealt only with
spherical particles. By using DDLS from spherical col-
loids that present an intrinsic optical anisotropy-due to
a partially crystalline internal structure [4,5], the first
measurement of the concentration dependence of the ro-
tational diffusion coefficient of spherical Brownian parti-
cles was recently performed [6]. The ® dependence of the
diffusion coefficients can be conveniently expressed by a
series expansion in powers of ®. In the case of the trans-
lational self-diffusion coeflicient the available theoretical
and experimental results go beyond the linear approxi-
mation, whereas in the case of rotational diffusion only
the linear term is known.

In this article we present experimental and theoreti-
cal results concerning orientational relaxation in hard-
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sphere colloidal suspensions. By using index-matched
suspensions, it is possible to perform measurements in a
wide range of volume fractions extending to the colloidal-
crystal region. The data give the full shape of the ori-
entational correlation function F,(t), which shows an in-
creasing deviation from exponential behavior as ® grows.
For & < 0.2 such a deviation shows an interesting scal-
ing property, in agreement with the theoretical predic-
tions. From F,(t) we derive the ®-dependent short-time
rotational diffusion coefficient. The theoretical results
include the calculation of the coefficient of the &2 term
in the series expansion of the short-time rotational dif-
fusion coefficient. The calculation takes into account
lowest-order three-body hydrodynamic effects. We have
good agreement between theoretical and experimental re-
sults. In particular, it is found that the coefficient of the
®2 term has the same (negative) sign as does the lin-
ear term. Such behavior is different from that found for
translational self-diffusion. In addition to the orienta-
tional correlation function, our experiment also gives the
self-translational correlation function F;(t). It should be
noted that F,(t) is measured with much better accuracy
than in previous measurements and without using any
specific tagging of particles.

The organization of the paper is as follows. In Sec. II
we recall the main formulas of the DDLS theory. In
Secs. III and IV we present the theoretical results con-
cerning the ® dependence of the rotational diffusion co-
efficient and in Sec. V we discuss the validity of the de-
coupling approximation that is used in the interpretation
of the dynamic light scattering results. In Sec. VI we de-
scribe the experiment and we report the experimental
data. In Sec. VII we compare our data with theory.
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II. LIGHT SCATTERING
FROM ANISOTROPIC PARTICLES

We consider spherical particles of radius a, made of
an anisotropic material characterized by a polarizabil-
ity tensor . We assume cylindrical symmetry for o
along a main optical axis and call a3, a3, and az the
diagonal components of the polarizability tensor in the
particle-fixed frame. The average polarizability of the
particle is o, = (as + 2a3)/3 and the average index
of refraction of the material constituting the particle is
np = (1+ap/Vp)'/2, where V,, = 4m(a3/3) is the particle
volume. We call 8 the anisotropy of the particle polar-
izability 8 = a3 — a;. It is assumed that the light scat-
tering treatment can be made under the Rayleigh-Debye
(also called Rayleigh-Gans) approximation. For particles
made of isotropic material the condition of validity of the
Rayleigh-Debye approximation is (47 /\)a(n, —n,) < 1,
where A is the wavelength of light and n, is the index
of refraction of the suspending medium. In the case of
anisotropic particles, there is an additional condition for
the validity of the approximation: (47/A)a(ns—n1) < 1,
where n3 = (1 + a3/Vp)/? and n; = (1 + a1 /V,) /2.

We consider the situation in which the incident field is
linearly polarized in the vertical direction and the scat-
tered field is observed in the horizontal plane. Because
of the particle anisotropy the total scattered field is the
superposition of two terms: the first is a vertically polar-
ized component with amplitude proportional to the op-
tical mismatch between particle and solvent; the second
is a depolarized component with amplitude proportional
to the internal particle anisotropy 3. The temporal fluc-
tuations of the first term are due to the translational
motion of the particles, whereas the dynamics of the sec-
ond term contains information about both translational
and rotational motion. The second term gives rise to the
horizontally polarized scattered field Ev g.

The correlation function of Ey g is defined as

Gvu(t) = (Eva(0)Eyg(?) - (1)

The dynamic light scattering experiment gives the mod-
ulus of the correlation function, which can be written as

N
|Gva () = Al Y (ava;(0)ava(t)
ik
x exp{ik - [R;(0) — Re(¥)]}) )

where A is a constant, Iy is the incident intensity, N is the
number of particles within the scattering volume, R;(t)
is the position of the jth particle at time ¢, and k is the
scattering vector with modulus k& = (47n,/A)sin(6/2), 6
being the scattering angle. The quantity oy g; is given
by

avi; =1y/2m/15 8 [Y2,1(2;(t)) + Y2,-1(2; ()] , (3)
where Y3 41 are the second-order spherical harmonic

functions of index +1 and Q(t) denotes the polar angles
d(t),¢(t), which specify the direction of the main optical

DEGIORGIO, PIAZZA, AND JONES 52

axis of the tracer particle at time ¢. Assuming that the
orientations of the optical axis of different particles are
uncorrelated and observing that (Y2 +1(22;(¢))) = 0, all
the cross terms in the expression for Gy g disappear. If
the N particles are identical, we have

|Gvr(t)| = AloN{avm;(0)av a;(t)
x exp{ik - [R;(0) — R;(t)]}) . (4)

Here j denotes any one of the N particles that can be
regarded as a tracer particle. Note that, for scattering
angle tending to 0, that is, & — 0, |Gy g(t)| becomes
proportional to the rotational single particle (tracer) cor-
relation function F;(t) defined as [7]

Fo(t) = 4m (¥5,(92;(0))Y2,1(2;(8))) - (5)

If we assume that the orientation of the particle is de-
coupled from the particle’s translation, the expression for
|Gv r (t)| becomes

|Gvr(t)| = AILNF,.(t)Fs(k,t), (6)
where
F,(k,t) = (exp{ik - [R;(0) — R;(¢)]}) (7

is the translational self-correlation function (self-dynamic
structure factor). In the case of hard spheres, the decou-
pling hypothesis is rigorously true at short times as we
discuss below and is expected to be approximately satis-
fied at all times.

In the case of spherical noninteracting particles, the
functions F, and F, are exponential:

Fy(k,t) = exp(—k*Dft),
F.(t) = exp(~6D51), (8)

where Df and D} are, respectively, the translational and
rotational diffusion coefficients of a single particle at in-
finite dilution. We recall that D} = kgT/(67na) and
Dy = kgT/(8mna®), where 7 is the shear viscosity of the
suspending fluid. The first cumulant of Gy g , for non-
interacting particles, is given by

T'vro = Dik* + 6D}, (9)

III. ROTATIONAL DIFFUSION COEFFICIENT

Under the assumptions made in the preceding section
that orientations of different particles are uncorrelated
(no orientation-dependent interactions) and that trans-
lational and orientational correlations are uncoupled, we
can use DDLS to measure the correlation function F(t).
This correlation function is a special case of the set of
correlation functions studied in Ref. [3] and defined by
Berne and Pecora [7] as

Ce'm’;tm(t) = (1’}Tm:(91(0))3’2m(91(t))) . (10)
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For a rotationally invariant system these correlation func-
tions are real and diagonal in £ and m [8],

CZ’M’;ZM(t) = %"}'Cl(t) ’
Ce(t) = (Pe (n1(0) - na(2))) . (11)

Here P; is a Legendre polynomial and 74(t) is a unit
vector that is parallel to the optical axis of particle 1 at
time t. Thus the experimentally measured F,(t) can be
expressed as

Fo(t) = Ca (2). (12)

The short-time rotational self-diffusion coefficient DS
is defined in the following way by the short-time behavior
of these correlation functions:

_dlnC[(t)

S _
L2 +1)DS = =

(13)

t—0

For noninteracting hard spheres of radius a the diffusion
coefficient D is the same as Djj, which was defined in
Sec. II. In such a non-interacting suspension the correla-
tion function Cy(t) is an exponential for all times and all
£ values,

Cy(t) = CQ(t) = exp[—£(£ + 1)Djt] . (14)

The existence of direct interparticle interactions (here as-
sumed to occur through spherically symmetric pair po-
tentials) and of hydrodynamic interactions (many body
in nature) means that the short-time rotational diffusion
coefficient DS becomes a function of the volume fraction
® of suspended particles. In addition, the measured cor-
relation function ceases to be exponential so that we can
write Cy(t) ~ exp[—£(£ + 1)D5t] only in the limit ¢ — 0.

The short-time coefficient DS measures the initial
mean-square displacement of the unit vector n(t) on the
surface of a unit sphere. At longer times, because the
unit sphere is a bounded and periodic surface, we can-
not make such an interpretation of rotational diffusion.
J

N
_ E} 1 (8V w 0
C_Z{[E)E kgT (611,-)] [D"J‘ OR;

i,j=1

Here L; = n; x9/0n,; is the gradient in orientation space
(3] and the diffusion tensors D;‘}’ are defined in terms
of elements of the grand mobility matrix [9-11] for the
suspension pg}’,

DY} = kpTu?(Xy) . (19)

The mobility tensors embody the hydrodynamic inter-
actions between the colloidal particles, which are many
body in character and not representable as a sum of pair
interactions except at low densities. Note that the mobil-
ity tensors depend on the positions of the particles but
not on their orientations. This is true only for spheri-
cal particles; for nonspherical particles the hydrodynamic
forces couple position and orientation variables. In terms
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For interacting systems the long-time behavior of Cp (t)
is best interpreted in Fourier representation in terms of
a frequency-dependent relaxation time 7¢(w) defined by

1

St W

Ce(w) = /0 = etCy (t)dt =

The short-time rotational diffusion constant is related to
the relaxation time at infinite frequency £(£ + 1)D5 =
7, *(00), while the zero-frequency limit of 7,(w) defines a
mean correlation time studied in Ref. [8],

7(0) = /Ocng(t)dt . (16)

To model these experimentally measurable quantities
we must specify the dynamics of the suspension. On
the time scale of dynamic light scattering observations
(times longer than the momentum relaxation times of the
colloidal particles) the generalized Smoluchowski equa-
tion (GSE) provides a good description of the dynam-
ics of the suspension [1,2]. The time correlation func-
tions can be expressed in terms of the adjoint Smolu-
chowski operator £ and the equilibrium solution to the
GSE, P.(X). Here we use X to denote the configura-
tion of the suspension in both position and orientation,
X = (Ry,...,RN,n1,...,nN), where R; is the position
of the center of particle i and m; is its orientation vec-
tor. As an abbreviation we will also write X = (X, X,)
with X; = (Ry,...,RN) and X, = (nq,...,nny). The
equilibrium distribution function for the suspension as a
whole P.(X) is given by

P.(X) = %exp[—V(X)/kBT] ) (17)
where Z is a normalization factor and V(X) is the
potential-energy function for the suspension. We assume
that V consists of a sum of spherically symmetric two-
body potentials that do not depend on particle orienta-
tion so that V(X) = V(X;). With this assumption the
adjoint Smoluchowski operator takes the form

T d 6 rr
+ Dﬁj -Lj] + L; - [D,.; . 3R, + D] -Lj] } (18)

[
of the time translation operator £ the correlation func-
tion Cpipnr.em (t) can be written as

Comtm(®) = 5 [ dXemVX0/kaT
XY (1) €Y (21). (20)

As shown elsewhere [1,3], we can express the short-time
rotational self-diffusion coefficient in the form

DS = DyHT
T __ 1 T\ __ kBT Tr
H; = 3Dy (TrDTY) = 3D} (Trpi]
kBT rr
= - dXPe(Xt)’I‘I'[Lll(Xt) . (21)
3Dg
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The function H? , which is volume fraction dependent,
is given as an equilibrium average over the trace of the
rotation-rotation part of the tracer particle mobility ten-
sor. Because of the X; dependence in the distribution
function P, and in the mobility tensor, the value of H
depends on both direct and hydrodynamic interactions.

IV. VIRIAL EXPANSION

The equilibrium average of the rotational mobility ten-
sor is difficult to calculate, even for hard-sphere pair in-
teractions, because of the many-body character of the
hydrodynamic interactions. For moderate volume frac-
tions ® of colloidal particles it is useful to evaluate Hj
as a virial series

H =1+H,®+ (22)

We recall that for the short-time translational self-
diffusion coefficient an exactly similar result holds [1],

Df = DtH!, D} = kpT/6mna,

1 kgT
s 3—%(TTD§§>=§—D‘3<TI'N?1 )

:2@2+...

&
I

(23)
[

H:=1+H! ®+H,®*+--.
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The coefficients of the linear terms H!,,HT, can be cal-

culated accurately from the two-body direct and hydro-
dynamic interactions [3,12,13] as

H!, = -1.831, HI = —0.630 (24)

The importance of many-body hydrodynamic interac-
tions was first demonstrated by Beenakker and Mazur
[14], who calculated the lowest-order three-body contri-
bution to Hf,. This term was of order R~7, where R is a
typical interparticle spacing. To order ®2 they reported

H!,=-0.93+1.80=0.88 |, (25)

where the term —0.93 arises from two-particle hydro-
dynamic interactions averaged over the order ®2 part
of the pair distribution function while the term 1.80 is
the lowest-order three-particle hydrodynamic interaction
contribution. Here the many-body hydrodynamic inter-
actions are so important that they change the sign of the
second virial coefficient.

It is of interest to see whether a similar sign rever-
sal occurs in the second virial coefficient for the rota-
tional self-diffusion coefficient. The virial expansion of
the many-body average in (21) is best carried out by use
of a rooted cluster expansion [3,15]. The result of such
an expansion is expressible as

n2 rr rr
(i) = WIi(B) + 52 [ dRadRa g(Ra, o) (5 (R, Ra) — T (Ra)

3
Mo
N 2N

dR1dR;dR3 g(Ry, Ry, R3){[k1](Ry, Rz, R3) — pi](Ry)]

= [#11(R1, Rz) — p1i(Ra)] — [#11(Ry, Rs) — pii(Ry)]} + -+,

where g(R,, R;) and g(R;, Rz, R3) are the pair and
triplet distribution functions for the suspension, ng is the
number density, and N is the total number of suspended
particles. In the thermodynamic limit the suspension is
translation invariant so that the distribution functions
and mobilities depend only on the relative positions of
the particles R;; = R; — R;. Note that the combina-
tions of mobilities that occur in the cluster expansion
ensure that all long distance divergences are eliminated
from the integrations. In the three-body term this en-
sures also that contributions to the three-body interac-
tions that are superpositions of pair interactions are also
subtracted out, leaving only irreducible three-body mo-
bility contributions.

The structure of the two-body mobility tensor 7]
has been given by Schmitz and Felderhof [9] in terms of
two independent scalar functions of relative separation
o7 (Ry2) and B77(R12). Using translation invariance we
can reduce the two-body contribution to the cluster ex-
pansion to the form

@ oo
(M11)two-body = D1 (1 +—3 | R’dRg(R)
2a
x{8mna’[ai](R) — Bi1(R)]

+3[8na’By; (R) — 1]}) : (27)

(26)

[

where 1 is the unit tensor, ® = (4/3)man¢ is the vol-
ume fraction of suspended spheres, R = Rj;, and g(R)
is the pair distribution function for a hard-sphere gas.
The functions af] and S]] can be calculated as series ex-
pansions in powers of 2a/R to arbitrary order [10]. The
hard-sphere pair distribution function has its own virial
expansion as [16]

9(R) = go(R) + 2g:(R) + -+, (28)
where
0, R<2a
wm={ % 555 (2)
and
_[8-3B 4 L(EY 9,<R<4a
g1(R) = { 0 otherwiég._ (30)

The integrals in (27) can be calculated to any desired
accuracy by use of the series expansions for aj] and S]]
together with a simple extrapolation procedure [13]. The
result for the two-body contributions to H? to three sig-
nificant figures is

H] =1-0.630® — 1.01%2

8,two-body

(31)
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For the translational self-diffusion coefficient [14] the con-
tribution of two-body hydrodynamic interactions is given
within an accuracy of a few percent by keeping only the
terms in the series expansions through order R~¢. For
the rotational case one needs to go to much higher order
to get comparable accuracy. We note for later reference
that if we kept series expansion terms only through order
R0 then instead of the result in Eq. (31) we would get

HT =1-0.500® — 0.723%2

s,two-body

(order R™19)

(32)

Turning now to the three-body hydrodynamic inter-
action effects we need keep only the lowest-order (in ®)
contribution to the triplet distribution function

|

75 a\?® a
Swna3”:ﬁ‘:three—sphere =0 Z Z (—) (————
4 ki 04k Rk Rie
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1, R12 2 20'7 R13 Z 20’) R23 Z 2a
0 otherwise

go(Ry, Rz, R3) = {

(33)

Mazur and van Saarloos [17] have published explicit ex-
pressions for some of the low-order three-body contribu-
tions to the mobilities u¥} and u]]. However, the explicit
contribution to the rotational mobility given by them (of
order R~¢ with R a typical interparticle separation) is
in fact a superposition of two-body terms and hence is
subtracted out of the order ®2 part of the cluster ex-
pansion. Instead, we require the lowest-order irreducible
three-body contribution to u77(R;, Rz, R3). This term
is straightforward to calculate using the method of reflec-
tions given by Reuland, Felderhof, and Jones [18]. For
the three-body mobility function for particle 7, w7, we
find the result

) (o) | (e =avi-a

+€z‘\/1 —5;‘:\/1-&? —Ek\/l —53\/1 — &2 —&\/1 —ﬁi\/l —E,-z)’flikeﬁike

—€e€e(&il — Ry Ryy)

In this equatlon .qu = qu/|R,pq|, while & = zk Rig,
& = Ry; - Ryg, and & = Ry; - Ry, The unit vector fuke
is normal to the triangle with vertices R;, Ry, and R,.

With the above result we find that the trace of
p77(R1, Rz, R3) depends only on the internal variables
of the triangle with vertices R;,R5, and R3, but not on
the orientation or position of the triangle. This enables
one to simplify the three-body integral in the cluster ex-
pansion (26) to the form

3DT ('I\.[‘D ;)three-body

225
—‘1’2—/ dt12/ dtl3/ d€1g0(t12,t13,81)

xf(tIZatl.?n 61) ) (35)

where ti2 = 2a/R12, ti3 = Za/RIS, 61 — R12 . R13,
go is the triplet distribution function, and the function
f(ti2,t13,&1) is defined by

12,12
f(tiz, t13,&1) = ;;/123 {262 — 1 — (t12 — t13€1)

X (t13 — t12€1)[(t3; + ti3)&1
—t12t13(5 — 3¢2)]/R%} (36)
with

h = h(ti2,t13,&1) = t3, + t35 — 2t19t13&; (37)

+0((e/R)™)

(34)

Since the triplet distribution function go(¢12,t13,£1) van-
ishes for overlap configurations of the three spheres, the
domain of integration in (35) is complicated. However,
we have used a Monte Carlo method to evaluate the in-
tegral and we find the result

=757 (TrD77) three-body = 0.3399? (38)

3D"

If we combine the three-body result with the two-body
contributions [correct to O((a/R)'°)] given in (32), we
find virial expansion coefficients

H? =1-0.500® — 0.384%> (order R7'%) , (39)

while if we use the exact two-body contributions (31) we
get

H, =1-0.630% — 0.67®> (40)

Although, just as in the case of the translational self-
diffusion coefficient [14], higher-order three-body inter-
actions will slightly change the magnitude of the coeffi-
cient of ®2 given by the lowest-order term in Eq. (38),
it is clear that the second virial coeflicient of H] remains
negative unlike that for H!, whose sign is changed by
many-body effects.
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V. THE DECOUPLING APPROXIMATION

As shown in Sec. I, dynamic light scattering from opti-
cally anisotropic particles measures correlation functions
of the form

N
4m .
Frum(ot) = 15 D (Yo (2:(0))Yem (24 (1))
4,j=1
xeik'[Ra(O)—Rj(t)]) . (41)

If we assume, as in Sec. II, that (i) orientational motions
of different particles are uncorrelated and (ii) transla-
tional and orientational motions of a single particle are
uncorrelated, then the correlation function above simpli-
fies to give the result

Ffom(kyt) = 4m(Y5 (21(0)) Yo (21(2)))
x (i 1R ()= Ry (8)]y

= 47TCgm';gm(t)F3 (k, t)
= 5m:ng(t)Fa(k,t), (42)

which we may call the decoupling approximation. The as-
sumptions above are valid for dilute suspensions of spher-
ical particles with short-range direct forces where differ-
ent particles are uncorrelated and where translation and
rotation of a single particle are uncoupled for symme-
try reasons. However, in more dense suspensions these
assumptions are not obviously satisfied. For example,
in the systems considered here the hydrodynamic inter-
actions mean that the relaxation of the orientation m;
of particle 7 is coupled to the position R; of particle
i through the position dependence of D77 (X;), so that
the assumptions of the decoupling approximation are not
met. Nevertheless, if the direct interactions described by
V(X) are orientation independent [V (X) = V(X,)] and
if the GSE describes the dynamics of the system, the
decoupling approximation is exact at short times.
To see this, we first write Eq. (41) as

N
Frim(k;t) = % ST (Vo () e B 5tV (@) e T P,
%,j=1

(43)

where the thermal average takes the form

((--4)) = M/dﬂr“dﬂzv/dRr“dRN (-,
Z, = / dR,---dRy exp[—V(X:)/ksT] .  (44)

We observe from (18 ) that the operator £ contains no
term that can couple Q; to ©; . Therefore, in the thermal
average, by orthonormality of spherical harmonics, all
collective terms (i # j) vanish so that F¥, (k,t) reduces
to a sum of self-correlations, which, for identical particles,
can be further reduced to the simple expression

F,,i:m(k, t) = 47T<Y-e:n’ (Ql)eik~R1 egtnm (Ql)e_""Rl)
(45)
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The operator £ is given in (18 ) as a sum of four parts,
which we write in an obvious notation as

L=CY+ LN + L+ L7 . (46)

The four parts of the operator do not commute with each
other because the translation operators d/9R; do not
commute with the position-dependent diffusion tensors
D?*(X,). This lack of commutativity tells us that the
decoupling approximation cannot be exact. However, we
can say something more at short times when we can write
the correlation function to order t as

Flom (ks t) = 4m (Y (1) Yor (1))
+t AT (Y (1) B LY, (Q1) e Br)
+O0(%) . (47)

In the term of order ¢t we insert the expression (46) so
that we must consider

4ﬂ<Y2:n,(Ql)eik-R1 (ctt + Etr + Lrt +£rr)

X Yo (Q1)e™ % B1) | (48)

It is now straightforward to use the orthonormality
properties of the spherical harmonics together with ap-
propriate symmetry properties to simplify the parts of
Eq. (47). For the zeroth-order term we have trivially

AT (Vs () Yem () = 6mim (49)

For the contribution of £L* to the expression given in (48)
we have, using isotropy,

A7 (Y ()™ LY Vi (Qr)e ™ 1)

= 47r<lfl’:n,(Ql)yzm(gl)><eik.RILtt e‘““Rl>
k2

For a translation-rotation component such as £™t we have

AT (Vs (@) T L7 Yy (1)K )

= 4 (Y (1) L1 Yem (1)) - (DY) -ik . (51)

In an isotropic suspension, (D7%) vanishes by a parity
argument so that there is no contribution from £™t. An
exactly similar argument shows that £!" makes no con-
tribution either. Finally, for £, using isotropy again,
we find

4%(}":":(91)6“3'121 crr nm(nl)e—ik«Rl)
- _sm.mﬂ:—l) (T+DT}) . (52)

Putting these results together gives, to first order in ¢,

Fl o (leyt) = 6mim{l — [k?DEHE + £(£ + 1)DH? t
+0(¢%)} (53)
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which is exactly the result of the decoupling approxima-
tion (42) to order t. Thus, for short-time measurements
the decoupling is exact; translation-rotation coupling ef-
fects appear only at order ¢, where terms such as

t? L r
5 ko (LraYem () L1, Yem () (DllapDiipe) ko (54)

break the decoupling approximation.

Even within the decoupling approximation Eq.
(42), the correlation function Cy(t) contains rotation-
translation coupling effects at long times because, in the
time translation operator £ that occurs in Eq. (20), the
operators £, £, and L™ do not commute with £7".
If we neglect these coupling effects it is possible, for a
dilute suspension, to derive an explicit result for Cy(t) at
longer times, which can be compared with experimental
measurements. The physical idea is to allow the particles
to carry out rotational time evolution while holding their
positions fixed, which corresponds to making the replace-
ment £ — L™ in the definition of Cyirmr.em () given in Eq.
(20). As discussed in detail elsewhere [8] it is then pos-
sible, working to first order in ®, to obtain a closed form
expression for Cy(t) that incorporates two-body direct
and hydrodynamic interactions.

In the absence of interactions between particles the
correlation function C,(t) becomes a pure exponential
C2(t) as given in Eq. (14). The interactions modify the
shape of C¢(t). We can express the deviations from pure
exponential behavior by a virial expansion [8]

Ce(t)
Ce()

=14+ Pv0)+--- , (55)
where v,(t) is given explicitly in Ref. [8] as

3 [ 2,—v(R)/ksT
@+ D)a? o, dR R¢e

£ Dr
X Z (exp{—kaT[Z(e+1)( e EI;LT)

q=—¢

+(el — H)qz] t} - 1)- (56)

Here v(R) is the two-body pair potential representing di-
rect interactions while aj7(R) and B]7(R) are the same
two-body mobility functions that occur above in Eq.
(27). For a hard-sphere pair potential, y2(¢) has been
computed numerically and reported in [8]. At short times
the results given in Egs. (55) and (56) reduce to give the
order ® result HJ,, quoted above in Eq. (24). At longer
times the effect of the hydrodynamic interactions is to
slow down the decay of C¢(t) relative to the exponential
decay of C2(t).

Ye(t) =

VI. EXPERIMENT

The samples we used are aqueous dispersions of col-
loidal particles of tetrafluoroethylene copolymerized with
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perfluoromethylvinylether (MFA), prepared and kindly
donated to us by Ausimont, Milano, Italy. The latex
is obtained by a dispersion polymerization process in the
presence of an anionic surfactant [5]. By a careful control
of the nucleation steps, the process yields fairly monodis-
perse spherical particles (standard deviation in volume
below 5%) with radius around 100 nm. MFA particles
are partially crystalline. Their internal structure is prob-
ably a conglomerate of some tens of microcrystallites dis-
persed in an amorphous matrix [5]. Each crystallite is a
folded ribbon of polymer chains packed in a regular crys-
talline structure. The crystallinity should be about 30%,
with a chain folding length of the order of 50 nm. The
latex particles bear a negative surface charge, which is
due in part to adsorbed surfactant and in part to the
end groups of the polymer chains (fluorinated carboxyl
ions) generated by the decomposition of the initiator.
The light scattering samples were prepared in the fol-
lowing way. The original latex, having a particle volume
fraction ® = 0.27, was purified by dialysis until a stable
low conductivity value was reached. A small amount of a
commercial nonionic surfactant (Triton X-100, produced
by Rohm & Haas) was then added to ensure steric stabi-
lization of the particles by surface adsorption. In order to
coarsely match the particle and solvent refractive indices
and to screen electrostatic interparticle interactions, a
second dialysis procedure was performed within a large
reservoir containing urea (index of refraction 1.484) at
18% by weight in water with 100 mM NaCl added. Index
matching was then further improved by adding urea or
water in small amounts until a minimal total scattering
cross section of the suspension was reached. Best match-
ing, using a He-Ne incident laser beam, was obtained for
a solvent refractive index n = 1.362. In this condition,
the ratio Iyy /Iv g at 90° is slightly less than 2. We left
the dialyzed latex to sediment in a vessel for about 6
weeks. The iridescent colloidal crystal phase that formed
at the bottom of the container was finally extracted. By
a density measurement we found that the average parti-
cle volume fraction of the crystal phase was 0.552. All
samples were prepared by diluting the concentrated latex
at ® = 0.552 with the clear supernatant extracted from
the top of the sedimentation vessel. The volume fraction
of all the samples was derived by measuring the intensity
of the depolarized scattered light Iy g and comparing it
with the value of Iy g given by the concentrated sample.
In fact, Iy gy is insensitive to interparticle interactions
[5] and represents therefore a good probe of the particle
concentration in the scattering volume [19]. The absolute
calibration of the volume fraction was further checked in
the following way. From previous studies performed on
quite similar latexes at 100 mM ionic strength, we know
that the phase diagram closely conforms to the equation
of state for a hard-sphere fluid [19]. A concentrated sam-
ple was left to equilibrate under gravity in a cell and
the depolarized scattering intensity was measured just
over and below the meniscus separating the fluid from
the colloidal crystal phase. By using the original calibra-
tion of the parent sample we get particle volume fractions
®r = 0.496 and P = 0.534 for the coexisting fluid and
crystal phases, which is within 3% of the expected values
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for a hard-sphere fluid.

Table I gives the sample denominations together with
the corresponding particle volume fractions. Samples
15F and 15C refer to a single preparation at & = 0.517
that was allowed to phase separate in the scattering
cell: by vertically translating the cell, measurements were
taken respectively just over (15F) and below (15C) the
meniscus separating the fluid and crystal phases in equi-
librium. We must, however, put a note of caution about
the concentration given for sample 15F: in previous sed-
imentation experiments on similar particles [19] we have
indeed noticed that the time for full equilibration of the
fluid layer just over the top of the colloidal crystal is gen-
erally much longer than the few hours we waited in the
present experiment, so that concentration supersatura-
tion or depletion phenomena cannot be excluded. Ac-
cordingly, the results for sample 15F are presented only
for completeness and will not be used in the fits of the
experimental data. The same experiment conversely did
not show similar slow equilibration phenomena in the top
layer of the crystallized suspension. We also determined
the turbidity of the samples, which is found to increase
almost linearly with ®. This confirms that the scattering
at index matching is essentially incoherent. The turbid-
ity attains for ® = 0.55 the value 0.39 cm™!.

The light scattering apparatus includes a He-Ne laser
operating at A = 632.8 nm, a cylindrical scattering cell
having an optical path of 8 mm immersed in a ther-
mostatted index-matching vat, a photomultiplier tube
mounted on a rotating arm, and a multiple-tau digital
correlator (Brookhaven Instruments, BI 9000). The ver-
tical polarization of the incident laser beam is improved
by a Glan-Thompson prism (Bernard Halle, Berlin) and
a second prism in the detection optics permits us to se-
lect the observed polarization. The extinction ratio of
the crossed polarizers is reduced by the stress birefrin-
gence of the cell and vat windows to about 10™%. The
scattered intensities Iyy and Iy gy are measured in the

TABLE I. Values of the volume fraction, of the transla-
tional self-diffusion coefficient, and of the rotational diffusion
coefficient for the samples used.

Sample ® D7 (1078 cm?s7?) D? (s
1 0.031 1.91+0.09 120.0+2.7
2 0.064 1.80+0.07 117.5+2.3
3 0.098 1.69+0.06 115.0£2.0
4 0.118 1.631+0.05 113.7+1.4
5 0.155 1.4740.06 111.2+1.8
6 0.189 1.2940.05 106.941.5
7 0.217 1.2240.05 103.2+1.6
8 0.255 1.0940.04 97.3+1.4
9 0.287 0.95+0.04 92.3+1.4
10 0.326 0.85+0.05 86.4+1.2
11 0.357 0.74+0.05 80.9+1.2
12 0.394 0.66+0.06 74.0+1.6
13 0.421 0.57+0.05 70.0+1.2
14 0.453 0.5010.06 65.5+1.4

15F 0.485 0.45+0.09 61.6+2.2
15C 0.534 0.38+0.05 58.1+1.4
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horizontal scattering plane. Particular care was taken
in reducing the collection of light scattered outside the
scattering plane by limiting the vertical width of the col-
lection optics with a narrow aperture. This makes very
small the possible depolarization effects due to multiple
scattering, thanks to the fact that the light doubly scat-
tered in the scattering plane preserves the incident polar-
ization. Indeed, with the above collection geometry, the
Iyy /Iy g ratio for the light scattered by a suspension
of isotropic polystyrene particles of radius a = 100 nm
having turbidity approximately equal to 0.7 cm™? is still
as low as 4 x 1073, All measurements were taken at
25°C with a thermal stability of 0.01°C . The depolar-
ized intensity correlation function was measured for each
sample at seven angles ranging from 15° to 135°.The
rotational contribution, yielding a finite correlation time
even at vanishing scattering wave vector, has the practi-
cal effect of reducing the range of variation of the decay
rate of the correlation function [6]. We could then use
for all scattering angles (and for all samples) the same set
of sampling times, ranging from 0.5 ms to 30 ms in 155
logarithmically spaced channels. The decay rates were
determined by using a standard cumulant fit program.
Further elaboration and fit to the data were performed
using a Levenberg-Marquardt nonlinear fit routine. To
give more information about the polydispersity of the
used particles, we present in Fig. 1 a depolarized field
correlation function measured on the most dilute sam-
ple (sample 1) at § = 15°. The full curve is a best fit
with a single exponential with a decay time of 1.42 ms
(corresponding to a particle radius of about 110 nm),
showing that the degree of polidispersity is indeed very
low. Noting that the ratio of the translational to the ro-
tational contribution, given by D§k?/(6D5) = (2/9)a%k?,
is about 3% at 15° for 110-nm particles, we conclude that
the observed decay rate is due only to rotational diffu-
sion and therefore scales as the inverse of the cube of the
particle radius. This means that deviations from expo-
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FIG. 1. Correlation function |Gv g (t)| of the depolarized
scattered field measured at the scattering angle # = 15°. The
full line is a fit with an exponential having a time constant of
1.42 ms.



52 ROTATIONAL DIFFUSION IN CONCENTRATED COLLOIDAL ...

nentiality are related to polydispersity of the particle vol-
ume. A two cumulant fit gives a volume polydispersity of
about 5%, which corresponds to a radius polydispersity
less than 2%, a figure that is lower than the best values
for polystyrene particles used as calibration standards.

VII. ANALYSIS OF THE EXPERIMENTAL DATA

A. Short-time translational
and rotational self-diffusion

Figure 2 shows the first cumulant of the VH correla-
tion function versus the squared modulus of the k vector
for three of the samples we used, showing the predicted
linear dependence on k2 with nonzero intercept. Linear
fits to the whole set of I" versus k2 plots yield the con-
centration dependence of the translational and rotational
self-diffusion coefficients, which are shown in Figs. 3 and
4. The fit was limited to measurements performed in the
fluid phase with exclusion of sample 15F. Error bars cor-
respond to one standard deviation determined using as
input the standard deviations of the fits to each T" vs k2
plot. To increase the accuracy of the intercept, measure-
ments at the lowest k were taken by using a much longer
accumulation time (typically 20 min). Notice that the
relative accuracy of D7 is better for large volume frac-
tions, where the fractional contribution of translational
diffusion is smaller. From the low-concentration limit for
D and DS we can derive a more precise value for the
particle size [6]: indeed the particle radius can be ob-
tained from a = (3D}/4Dj)/2 = (110 + 2) nm. Such an
expression has the advantage of being independent of the
solvent viscosity and temperature.

As can be seen from Figs. 3 and 4, both the ro-
tational and the translational self-diffusion coefficients
monotonically decrease as the particle volume fraction is
increased. The translational self-diffusion data are com-
pared in Fig. 3 with the theoretical predictions for hard
spheres. The full line has been drawn by fixing the first

Tyu H
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k2 (1010 cm*2)
FIG. 2. First cumulant of |Gvu(t)| plotted versus the
square modulus of the scattering vector for three distinct

samples: dots refer to sample 4, stars to sample 9, squares
to sample 15C.
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FIG. 3. Short-time translational self-diffusion coefficient
D? plotted as a function of the volume fraction ®. The full
line represents a polynomial fit including linear and quadratic
terms. The two points at the largest volume fractions (open
dots), which refer to samples 15F and 15C, are excluded from
the fit.

virial coefficient to the accurate value calculated by Ci-
chocki and Felderhof [13] and fitting a ®2 term to the
data. The result of the best fit is

Df = (2+0.02)

x108[1 — 1.83® + (0.5 + 0.1)®?] cm?/s.  (57)

The value of the coefficient HY, is slightly lower than

130 T - T T
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FIG. 4. Short-time rotational diffusion coefficient D5 plot-
ted as a function of the volume fraction ®. The full line rep-
resents a polynomial fit including linear and quadratic terms.
The two points at the largest volume fractions (open dots),
which refer to samples 15F and 15C, are excluded from the
fit. The dotted line is the theoretical prediction calculated in
Sec. IV.
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the theoretical value calculated by Beenakker and Mazur
[14]. Note that these authors obtained also a smaller
value for H:, (H!;, = —1.73) because of the limited num-
ber of terms included in their expansion. Our experimen-
tal results agree within error bars with previous measure-
ments by van Veluwen et al. [20] and by van Megen and
Underwood [21] performed with different techniques. We
also find good agreement with the numerical simulation
results [22].

An interesting question is the effect of the crystal phase
on the short-time self-diffusion coefficient. Our data sug-
gest a slight relative increase of DY compared to the value
expected by extrapolation of the fluid-phase data. This
suggests that the tracer mobility in the dense fluid is
slightly less than in the crystal at essentially the same
volume fraction. We can understand this qualitatively
by observing that crystallization in a hard-sphere sus-
pension implies a substantial increase of the configura-
tional entropy associated with the extra free volume per
particle available in the crystal as opposed to the fluid
phase. Since the hydrodynamic interaction effect on a
tracer should be less if there is more free volume (greater
mean interparticle separation) we might expect D to be
slightly enhanced in the crystal phase. The fact that the
trend of the translational self-diffusion coefficient closely
conforms to the existing theoretical predictions and ex-
perimental data strongly supports the validity of the de-
coupling approximation at short times for all volume frac-
tions.

Figure 4 shows the results for the short-time rotational
self-diffusion coefficient. First of all, D presents a be-
havior markedly different from that found for D7: in-
deed, the slope of the DZ versus ® curve becomes steadily
more negative with increasing ®. This clearly means that
(a) the coefficient H, in the virial expansion has to be
negative and (b) its magnitude relative to H7; is much
larger than in the case of translational diffusion, where
a very limited deviation from linearity in ® is observed
over the whole concentration range. The dotted line in
Fig. 4 is the theoretical prediction given in Eq. (40). The
agreement is rather good, although the experimental data
seem to show a slightly smaller initial slope and con-
versely a slightly larger downward curvature. Indeed, a
best fit to a second degree polynomial with all parameters
free (full line ) gives

D? = (123.3 £ 1.5)

x[1 - (0.55 +0.08)® — (1.1 £0.2)®%*]s™. (58)
It is possible that the agreement between experiment and
theory could improve by adding higher-order terms in
the virial expansion. It should also be taken into ac-
count that the value of HJ, is extremely sensitive to
the pair correlation function near touching [3,8,23], due
to the overwhelming importance for rotational diffusion
of very short-distance hydrodynamic contributions. It
is therefore possible that the ionic strength of the used
colloidal suspensions is not large enough to completely
screen Coulomb repulsions. It is known that the effect of
residual electrostatic interactions that prevent particles
from coming into close contact is that of reducing H7,,
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whereas no prediction is available about the influence on
the higher-order terms.

B. Long-time behavior

In this section we discuss the full shape of the ro-
tational correlation function. We assume, first of all,
that the correlation function measured at the smallest
accessible scattering angle 0, is purely rotational. In-
deed, we note that for the scattering wave vector kmyin =
1.24 x 1072 cm?s™?! corresponding to O, the transla-
tional contribution to the initial decay of the correlation
function ranges from 3.3% for sample 1 down to 1.4% for
sample 15C. Within the decoupling approximation this
suggests that the correlation functions measured at kmin
are purely rotational to a good degree of approximation.
We call Gy g (t,®) the correlation function taken at kmin
with the sample at volume fraction ® and we call ®, the
lowest used volume fraction (sample 1). We can then
write

Gvu(t,®) 1+ $vq(t)

= =14+(®2-@ t 59

Gva(t,®1) 1+ ®172(t) ( 1)72(t)  (59)
so that y;(¢) can be calculated as

() = Cva:®)/ Gyt 81) —1 (60)

¢ -9,

Figure 5 shows the experimental v;(t) for some of the
measured samples. We find that all the data relative to
® < 0.2 fall approximately on the same curve, which
closely follows the theoretical prediction [8]. Figure 5
shows that, for & > 0.2, the experimental curves start
with a larger initial slope and acquire a larger and larger
upward curvature. It is simple to account for the increase
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FIG. 5. Measured function «2(t) plotted as a function of
normalized time 6Dgt for seven distinct volume fractions
(listed in the inset). The full line represents the theoretical
prediction for low volume fractions.
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of the initial slope if we note that, including the ®2 term
in the virial expansion for Df , the short-time expression
for v2(t) should be

v2(t) = —6Dgt [H7, + H (@ + o)) (61)

Figure 6 shows the experimentally determined quantity

d
1 L dn

517 6Dy 150 dt (62)

as a function of ®. The full line represents the behavior
predicted by Eq. (61), using the best fit values for HI,
and H},. We see that the agreement is good.

VIII. CONCLUSIONS

In this article we have presented experimental and the-
oretical results concerning orientational relaxation and
translational self-diffusion in hard-sphere colloidal sus-
pensions. By using index-matched suspensions of intrin-
sically anisotropic spheres, we have performed depolar-
ized dynamic light scattering measurements in a wide
range of volume fractions up to the colloidal-crystal re-
gion. We have obtained the ¢ dependence of the short-
time rotational diffusion coefficient and of the short-time
translational self-diffusion coefficient. In the case of Dy
we have good agreement with previous theoretical and
experimental results. Concerning D?, we have presented
theoretical calculations that give the value of the coeffi-
cient of the ®2 term by taking into account lowest-order
three-body hydrodynamic effects. We find that the pre-
dicted behavior of DS is in good agreement with the ex-
perimental results. Our data show that the coefficient of
the ®2 term has the same (negative) sign presented by the
linear term. Such behavior is different from that found
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FIG. 6. Initial slope of v2(t) plotted as a function of the
volume fraction. The full line represents the prediction, as
calculated from Eq. (61). The dashed lines represent lower
and upper bounds for the predicted values, once the exper-
imental uncertainty in the evaluation of the parameters is
taken into account.

for translational self-diffusion. We have also measured
the full shape of the orientational correlation function
F,.(t), which shows an increasing deviation from expo-
nential behavior as & grows. For & < 0.2 such a devia-
tion shows an interesting scaling property, in agreement
with the theoretical predictions.
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